10 research outputs found

    Multi Object Detection And Tracking Using Optical Flow Density โ€“ Hungarian Kalman Filter (Ofd - Hkf) Algorithm For Vehicle Counting

    Get PDF
    Intelligent Transportation Systems (ITS) is one of the most developing research topic along with growing advance technology and digital information. The benefits of research topic on ITS are to address some problems related to traffic conditions. Vehicle detection and tracking is one of the main step to realize the benefits of ITS. There are several problems related to vehicles detection and tracking. The appearance of shadow, illumination change, challenging weather, motion blur and dynamic background such a big challenges issue in vehicles detection and tracking. Vehicles detection in this paper using the Optical Flow Density algorithm by utilizing the gradient of object displacement on video frames. Gradient image feature and HSV color space on Optical flow density guarantee the object detection in illumination change and challenging weather for more robust accuracy. Hungarian Kalman filter algorithm used for vehicle tracking. Vehicle tracking used to solve miss detection problems caused by motion blur and dynamic background. Hungarian kalman filter combine the recursive state estimation and optimal solution assignment. The future positon estimation makes the vehicles detected although miss detection occurance on vehicles. Vehicles counting used single line counting after the vehicles pass that line. The average accuracy for each process of vehicles detection, tracking, and counting were 93.6%, 88.2% and 88.2% respectively

    Sparse Coding-Based Method Comparison for Land-Use Classification

    Get PDF
    Land-use classification utilize high-resolution remote sensing image. The image is utilized for improving the classification problem. Nonetheless, in other side, the problem becomes more challenging cause the image is too complex. We have to represent the image appropriately. On of the common method to deal with it is Bag of Visual Word (BOVW). The method needs a coding process to get the final data interpretation. There are many methods to do coding such as Hard Quantization Coding (HQ), Sparse Coding (SC), and Locality-constrained Linear Coding (LCC). However, that coding methods use a different assumption. Therefore, we have to compare the result of each coding method. The coding method affects classification accuracy. The best coding method will produce the better classification result. Dataset UC Merced consisted 21 classes is used in this research. The experiment result shows that LCC got better performance / accuracy than SC and HQ. LCC method got 86.48 % accuracy. Furthermore, LCC also got the best performance on various number of training data for each class

    MULTI OBJECT DETECTION AND TRACKING USING OPTICAL FLOW DENSITY โ€“ HUNGARIAN KALMAN FILTER (OFD - HKF) ALGORITHM FOR VEHICLE COUNTING

    Get PDF
    Intelligent Transportation Systems (ITS) is one of the most developing research topic along with growing advance technology and digital information. The benefits of research topic on ITS are to address some problems related to traffic conditions. Vehicle detection and tracking is one of the main step to realize the benefits of ITS. There are several problems related to vehicles detection and tracking. The appearance of shadow, illumination change, challenging weather, motion blur and dynamic background such a big challenges issue in vehicles detection and tracking. Vehicles detection in this paper using the Optical Flow Density algorithm by utilizing the gradient of object displacement on video frames. Gradient image feature and HSV color space on Optical flow density guarantee the object detection in illumination change and challenging weather for more robust accuracy. Hungarian Kalman filter algorithm used for vehicle tracking. Vehicle tracking used to solve miss detection problems caused by motion blur and dynamic background. Hungarian kalman filter combine the recursive state estimation and optimal solution assignment. The future positon estimation makes the vehicles detected although miss detection occurance on vehicles. Vehicles counting used single line counting after the vehicles pass that line. The average accuracy for each process of vehicles detection, tracking, and counting were 93.6%, 88.2% and 88.2% respectively

    COMPARISON OF IMAGE ENHANCEMENT METHODS FOR CHROMOSOME KARYOTYPE IMAGE ENHANCEMENT

    Get PDF
    The chromosome is a set of DNA structure that carry information about our life. The information can be obtained through Karyotyping. The process requires a clear image so the chromosome can be evaluate well. Preprocessing have to be done on chromosome images that is image enhancement. The process starts with image background removing. The image will be cleaned background color. The next step is image enhancement. This paper compares several methods for image enhancement. We evaluate some method in image enhancement like Histogram Equalization (HE), Contrast-limiting Adaptive Histogram Equalization (CLAHE), Histogram Equalization with 3D Block Matching (HE+BM3D), and basic image enhancement, unsharp masking. We examine and discuss the best method for enhancing chromosome image. Therefore, to evaluate the methods, the original image was manipulated by the addition of some noise and blur. Peak Signal-to-noise Ratio (PSNR) and Structural Similarity Index (SSIM) are used to examine method performance. The output of enhancement method will be compared with result of Professional software for karyotyping analysis named Ikaros MetasystemT M . Based on experimental results, HE+BM3D method gets a stable result on both scenario noised and blur image.

    Comparative Study of Rtos and Primitive Interrupt in Embedded System

    Get PDF
    Multitasking is one of the most challenging issues in the automation industry which is highly depended on the embedded system. There are two methods to perform multitasking in embedded system: RTOS and primitive interrupt. The main purpose of this research is to compare the performance of Rร‚ยฌTOS with primitive method while concurrently undertaking multiple tasks. The system, which is able to perform various tasks, has been built to evaluate the performance of both methods. There are four tasks introduced in the system: servo task, sensor task, LED task, and LCD task. The performance of each method is indicated by the success rate of the sensor task detection. Sensor task detection will be compared with the true value which is calculated and measured manually during observation time. Observation time was varied after several iterations and the data of the iteration are recorded for both RTOS and primitive interrupt methods. The results of the conducted experiments have shown that, RTOS is more accurate than interrupt method. However, the data variance of the primitive interrupt method is narrower than RTOS. Therefore, to choose a better method, an optimization is needed to be done and each product has its own standard

    Low-Cost Camera-Based Smart Surveillance System for Detecting, Recognizing, and Tracking Masked Human Face

    No full text
    A surveillance system is still the most exciting and practical security system to prevent crime effectively. The primary purpose of this system is to recognize the identity of the face caught by the camera. With the advancement of the Internet of things, surveillance systems were implemented on edge devices such as the low-cost Raspberry mobile camera. It raises the challenge of unstructured image/video where the video contains low quality, blur, and variations of human poses. The challenge is increasing because people used to wear a mask during the Covid -19 pandemic.ย  Therefore, we proposed developing an all-in-one surveillance system with face detection, recognition, and face tracking capabilities. This system integrated three modules: MTCNN face detector, VGGFace2 face recognition, and Discriminative Single-Shot Segmentation (D3S) tracker to create a system capable of tracking the faces of people caught on surveillance camera. We also train new face mask data to recognize and track. This system obtains data from the Raspberry Pi camera and processes images on the cloud as a mobile sensor approach. The proposed system successfully implemented and obtained competitive results in detection, recognition, and tracking under an unconstrained surveillance camera

    An efficient secure ECG compression based on 2D-SPIHT and SIT algorithm

    Get PDF
    The 2D-SPIHT of the Electrocardiogram (ECG) Telehealth system is still be a concern. The performance in the transmission process of the ECG signal data is kept being improved. The ECG signals containing a large-size of health data that must be secured. This research proposes an efficient combination of a compression and an encryption algorithms. Two-Dimension Set Partitioning in Hierarchical Tree (2D-SPIHT) used to optimally compress signals then combined with recently lightweight encryption algorithm, namely Secure IoT (SIT). This approach also proposes new effective encryption stage by just encrypt the most important information of compression signals that is beat-order. Several scenarios were conducted like encrypting the whole bit-stream and combining 2D-SPIHT with another encryption method, Advanced Encryption Standard (AES). The experiment result shows that proposed method gives good performance in compression and encryption. Encrypting successfully produced encrypted data that is highly different data compared to original data. Finally, the combination between 2DSPIHT and SIT method with encrypting beat-order is the best approach. This got PRD is of 0.650 with compression-encryptiondecryption time is of 83.50 seconds

    Detecting Left Heart Failure in Echocardiography through Machine Learning: A Systematic Review

    No full text
    Background: Heart failure remains a considerable burden to healthcare in Asia. Early intervention, mainly using echocardiography, to assess cardiac function is crucial. However, due to limited resources and time, the procedure has become more challenging during the COVID-19 pandemic. On the other hand, studies have shown that artificial intelligence (AI) is highly potential in complementing the work of clinicians to diagnose heart failure accurately and rapidly. Methods: We systematically searched Europe PMC, ProQuest, Science Direct, PubMed, and IEEE following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and our inclusion and exclusion criteria. The 14 selected works of literature were then assessed for their quality and risk of bias using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies). Results: A total of 2105 studies were retrieved, and 14 were included in the analysis. Five studies posed risks of bias. Nearly all studies included datasets in the form of 3D (three dimensional) or 2D (two dimensional) images, along with apical four-chamber (A4C) and apical two-chamber (A2C) being the most common echocardiography views used. The machine learning algorithm for each study differs, with the convolutional neural network as the most common method used. The accuracy varies from 57% to 99.3%. Conclusions: To conclude, current evidence suggests that the application of AI leads to a better and faster diagnosis of left heart failure through echocardiography. However, the presence of clinicians is still irreplaceable during diagnostic processes and overall clinical care; thus, AI only serves as complementary assistance for clinicians

    Learning Intelligent for Effective Sonography (LIFES) Model for Rapid Diagnosis of Heart Failure in Echocardiography

    No full text
    Background: The accuracy of an artificial intelligence model based on echocardiography video data in the diagnosis of heart failure (HF) called LIFES (Learning Intelligent for Effective Sonography) was investigated. Methods: A cross-sectional diagnostic test was conducted using consecutive sampling of HF and normal patientsโ€™ echocardiography data. The gold-standard comparison was HF diagnosis established by expert cardiologists based on clinical data and echocardiography. After pre-processing, the AI model is built based on Long-Short Term Memory (LSTM) using independent variable estimation and video classification techniques. The model will classify the echocardiography video data into normal and heart failure category. Statistical analysis was carried out to calculate the value of accuracy, area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and likelihood ratio (LR). Results: A total of 138 patients with HF admitted to Harapan Kita National Heart Center from January 2020 to October 2021 were selected as research subjects. The first scenario yielded decent diagnostic performance for distinguishing between heart failure and normal patients. In this model, the overall diagnostic accuracy of A2C, A4C, PLAX-view were 92,96%, 90,62% and 88,28%, respectively. The automated ML-derived approach had the best overall performance using the 2AC view, with a misclassification rate of only 7,04%. Conclusion: The LIFES model was feasible, accurate, and quick in distinguishing between heart failure and normal patients through series of echocardiography images
    corecore